Boruvka Meets Nearest Neighbors

نویسندگان

  • Mariano Tepper
  • Pablo Musé
  • Andrés Almansa
  • Marta Mejail
چکیده

Computing the minimum spanning tree (MST) is a common task in the pattern recognition and the computer vision fields. However, little work has been done on efficient general methods for solving the problem on large datasets where graphs are complete and edge weights are given implicitly by a distance between vertex attributes. In this work we propose a generic algorithm that extends the classical Boruvka’s algorithm by using nearest neighbors search structures to reduce significantly time and memory performances. The algorithm can also compute in a straightforward way approximate MSTs thus further improving speed. Experiments show that the proposed method outperforms classical algorithms on large low-dimensional datasets by several orders of magnitude. Finally, to illustrate the usefulness of the proposed algorithm, we focus on a classical computer vision problem: image segmentation. We modify a state-of-the-art local graph-based clustering algorithm, thus permitting a global scene analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

Diagnosis of Heart Disease Using Binary Grasshopper Optimization Algorithm and K-Nearest Neighbors

Introduction: The heart is one of the main organs of the human body, and its unhealthiness is an important factor in human mortality. Heart disease may be asymptomatic, but medical tests can predict and diagnose it. Diagnosis of heart disease requires extensive experience of specialist physicians. The aim of this study is to help physicians diagnose heart disease based on hybrid Binary Grasshop...

متن کامل

The Performance of small samples in quantifying structure central Zagros forests utilizing the indexes based on the nearest neighbors

Abstract Todaychr('39')s forest structure issue has converted to one of the main ecological debates in forest science. Determination of forest structure characteristics is necessary to investigate stands changing process, for silviculture interventions and revival operations planning. In order to investigate structure of the part of Ghale-Gol forests in Khorramabad, a set of indices such as Cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013